

The Skagerak Facility

Providing world-class infrastructure and services in support of advanced and multidisciplinary marine research and education

The Skagerak Facility

The Skagerak Facility is a research infrastructure of the University of Gothenburg and includes:

- RV Skagerak
- Kongsberg Hugin AUV
- Inventory of scientific equipment
- Marine data
- Technical expertise/support



Vision:

To provide high quality research infrastructure and services in support of advanced and multidisciplinary marine science and education for global societal benefit

RV Skagerak

49m Special Purpose vessel Polar Ship Certified

Dimensions

49.15 m
46.44 m
11.25 m
2.1 M
3.9 m
22 m
916
916.45

RV Skagerak

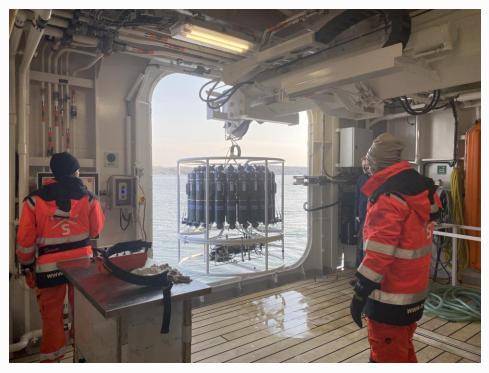
Delivered 2021; fully operational since September 2022

Owned by University of Gothenburg; crew, hull and machinery managed by Northern Offshore Services

Machinery/Propulsion/Electricity/DP

Propulsion:

Generator sets: Bow/Stem Thrusters: Dynamic Positioning:


Capacities

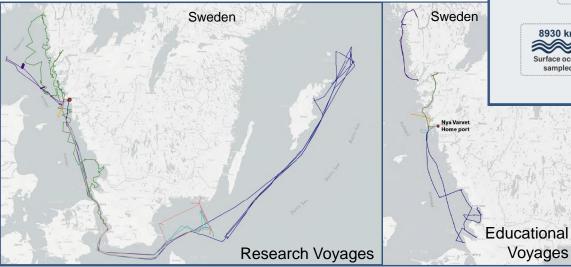
Speed:

Time at sea: Crew: Fuel: Freshwater: Sewage sludge: Sewage holding tank: Diesel Electric. Main engine: Nidec 1120 kW 4 x Volvo Penta D16, 420 kW Brunwoll 250 kW DP1

Service speed 11.5 knots, max. speed approx. 14 knots Up to 3 weeks 5-7 depending on operations 93.8m³ HVO or Diesel 46 m³ + on-board production 3.0 m³ 7.5 m³

System	Equipment
Ferrybox	SBE38
Jena engineering -4H-	SBE45
U U	Cyclops-7
	Wetlabs FLNTU
	Aanderaa Oxygen Optode 4835
Weather station	Observator OMC-160
	Observator OMC-506
	Observator OMC-406
	Kipp & Zonen PQS 1
	Kipp & Zonen CMP11
ADCP	Ocean Surveyor 75 kHz (2008)
CTD	Seabird911 with 24 bottle rosette
	SB3
	SB4
	SBE43
	Wetlabs FLNTURT
	Wetlabs FLNTURT
Echos sounders	Kongsberg EM2040-07
	Kongsberg TOPAS PS40
Acoustic positioning	
system	Kongsberg HIPAP 501

Four laboratories, including atmospheric, dry lab, wet lab and main laboratory. Access to gas outlets, sea water, underway data, presentation screens, fume hoods and storage.



Large aft deck (110 m²), with moveable A-frame (8t at 7m reach). Multiple fittings for containerised laboratories and equipment. Ideal for deployment of large scientific platforms (AUVs, ROVs, Landers)

2022

The first full year of (potential) operation and included many milestones as the Facility worked to establish operational standards and procedures, complete the ship build and run calibration and testing of all onboard equipment. Regardless, we achieved 80 sea days for research and education, across the Skagerrak, Kattegat and Baltic Seas

North

Sea

Kaliningrad
Katarina Abrahams

Polane

German

A great year for us, 150 sea days for research and education from the Baltic to Greenland – internal users only. Now to build a larger research user base Additionally – building our commercial portfolio for filling in "dead days"

2023

Scientific Equipment Inventory

7m RIB boat

Sediment samples (multi-, box-, piston- and gravity corers)

Benthic landers

Gliders

Sail buoys

Nets (multi-nets, plankton nets etc)

ADCPs

Portable CTDS

Microstructure profilers

Cold container laboratory

Small ROV

Contros sensors

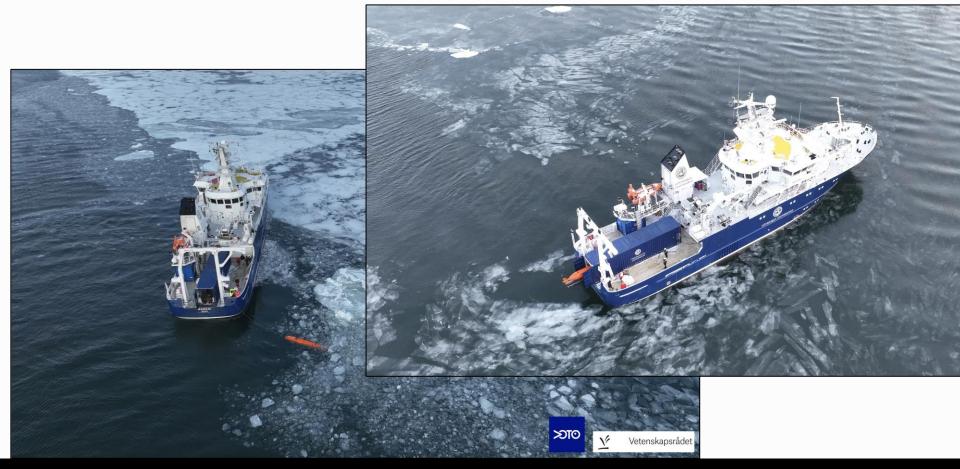
AUV 'Ran'

A Kongsberg Hugin 3000 m Autonomous Underwater Vehicle

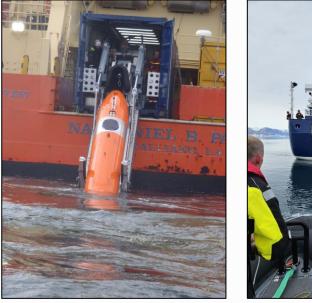
Dimensio	าร	Depth rating and range	Power supply	Endurance
Length: appro Diameter: 87 Weight: 185	5 mm	3000 m 300 km	4 (max 6) rechargeable and swappable Lithium Polymer batteries	36 hours

Funded by Knut & Alice Wallenberg Foundation

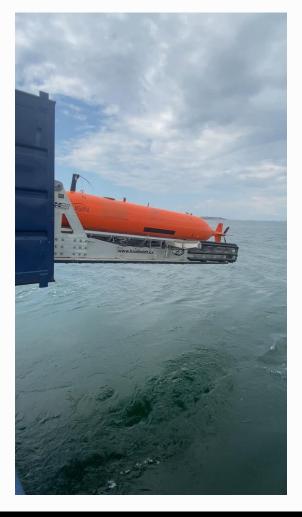
UNIVERSITY OF GOTHENBURG


https://www.gu.se/en/skagerak/new-rv-skagerak/autonomous-underwater-v

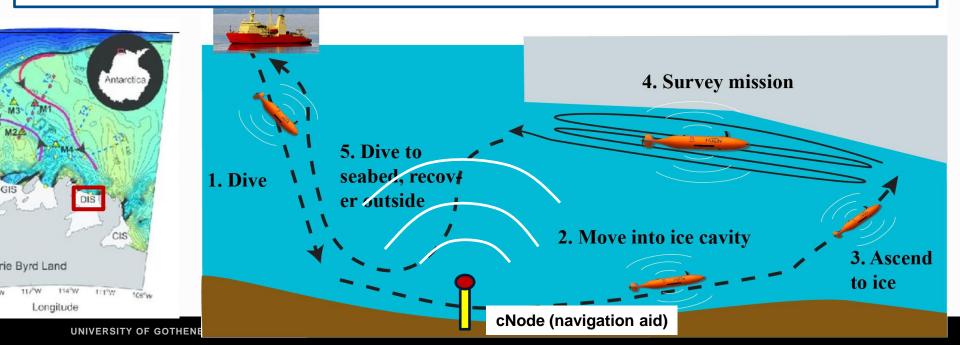
- Kongsberg multibeam echosounder EM2040C, 0.9x0.9 beam width
 – upward looking
- Kongsberg multibeam echosounder EM2040, 200-400Hz, 0.7x0.7 beam width– downward looking
- CTD dual system Seabird 911 19plusv2
- Oxygen Seabird SBE43 (dual system)
- Carbon dioxide Contros HydroC
- Nitrate SeaBird Deep SUNA
- Chlorophyll/turbidity SeaBird WetLabs ECOtriplet (FLBBCD)
- Side scan sonar EdgeTech 2205, 75/410kHz (1-6km range)
- Sub-bottom profiling sonar EdgeTech DW216 with configurable chirp
- Nav system
 – DVL-supported Honeywell Hg9900, accuracy of >0.08% of distance travelled
- Acoustic communication below surface 2-3km between ship and AUV
- Satellite, radio and WiFi communication in surface mode

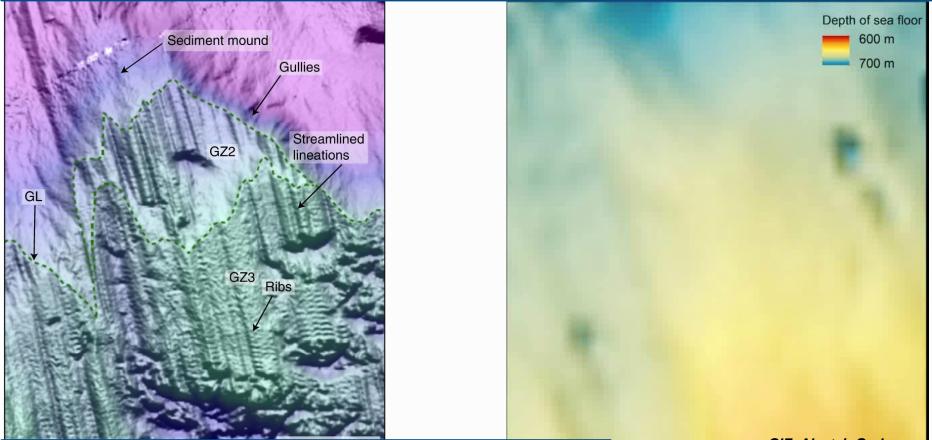

Capacity to take 13 water samples (150 ml each): Ca 100 water samples from the ice shelf cavity in 2022. Isotopes, Chl-a, geology (particles) etc

= MMT


AUV + all equipment comes in one 40-foot container and one 10 foot container

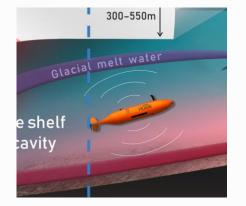
Launch and Recovery

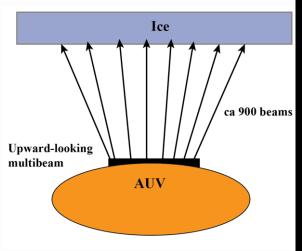


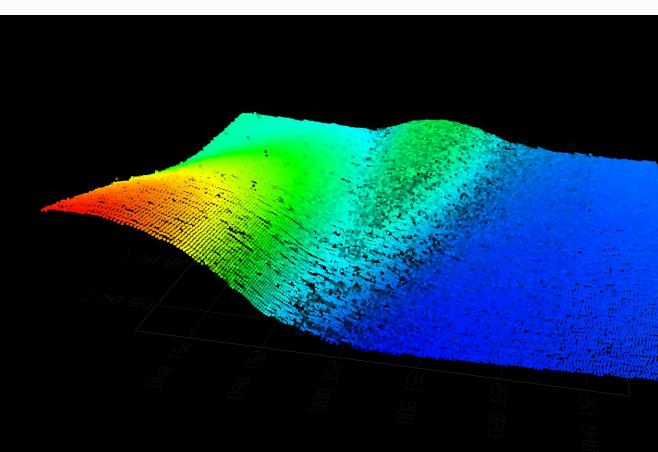

Jan – March 2022: 14 missions in Amundsen Sea (West Antarctica) from NB Palmer Launch in safe, icefree place, dive down to seabed, swim into the cavity, swim up to ice, perform ice survey, then dive down to seabed and swim northwards for 1 h

1732 km distance traveled (1075 km under ice)

Data sets: High resolution (1 dm) maps of ice base, high resolution (<5 dm) maps of seabed, T, S and O₂, CO₂, nitrate, Fl, turbidity, about 100 water samples (150 ml each), and current velocity




Downward-looking multibeam: High resolution images of the seabed – details visible that no one has seen before (need AUVs to get close to seabed)


Graham et al, 2022. Rapid retreat of Thwaites Glacier in the pre-satellite era. Nature Geoscience, 15 (9) (part of the ITGC project)

GIF: Alastair Graham, BAS

Upward-looking multibeam: Kongsberg EM2040 CX

louise.newman@gu.se

RIPLE)

GÖTEBORGS UNIVERSITET

Swedish Research Vessel Infrastructure for Marine Research (SWERVE)

National research infrastructure program that will:

- Support a National Marine Technicians Network for training, sharing and capacity development
- QC and standardised deliver of data to international data repositories (COPERNICUS, EMODnet)
 Funded ship-time for Swedish researchers

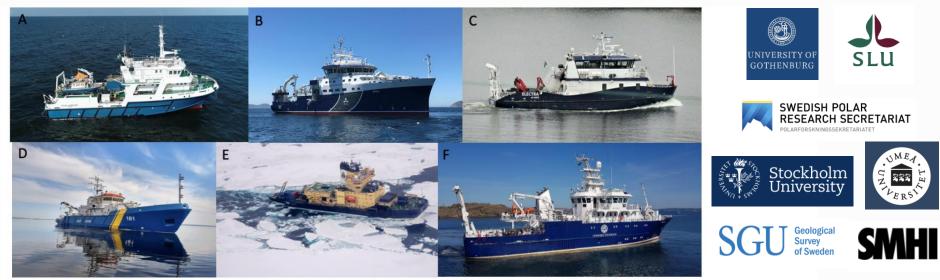


Fig. 3: The research vessel infrastructure involved in the SWERVE consortium. A) Ocean Surveyor (SGU); B) Svea (SLU); C) Electra (SU); D) KBV181 (UmU); E) Oden (SPRS); F) Skagerak (GU)

UNIVERSITY OF GOTHENBURG