ABB Marine Silent marine research with Azipod propulsion

Janne Roivainen and Sampo Viheriälehto

ABB Marine & Ports

10.10.2023

© Copyright ABB. All rights reserved.

Document ID.:

ABB

Rev.:

ABB is a technology leader in electrification and automation, enabling a more sustainable and resource-efficient future.

The company's solutions connect engineering know-how and software to optimize how things are **manufactured**, **moved**, **powered** and **operated**.

ABB in Finland

Key figures

©ABB October 10, 2023 Slide 4

Fully decentralized business model with 20 divisions

1. Divestment announced. Expected to be completed in H2 2023. 2. Reported as part of "Corporate and Other" as of Q1 2023.

Azipod® propulsion key facts and figures

Unrivaled manouvering Superior maneuverability to improve safety

Icebreaking Proven and reliable gearless propulsion technology

Dual Acting Ship concept CAPEX: No need for Line icebreakers, independent operations in ice

50% less ice resistance in astern mode

Hydrodynamic efficiency Low noise and vibration OPEX: fuel efficiency increase up to 20 percent

5

5

Sustainability

Electric propulsion technology provides a platform for transition to zero carbon operations, Energy Agnostic solution

Azipod[®] gearless propulsion family

Power range 1...22MW – with proven technology

		A P			AN CONTRACTOR		
	Azipod	[®] D	Azipod® M	Azipod [®] XO	Azipod [®] XL	Azipod [®] ICE	Azipod [®] VI
Power (MW)	1 – 7.5	NEV	7 – 14.5	14 – 22	14 – 22	2-5	6 – 17
Cooling	Air + Se		Air + Sea	Air	Air	Sea	Air
Motor type	PM or indu	Azipod [®] DI	РМ	Synchronous	Synchronous	РМ	Synchronous
Max ice class	PC 6	2 – 6.5	PC6	PC6		PC 3	PC2
		Air + Sea	-				
		Induction					
© АВВ October 10, 2023	Slide 8	PC 3					ABB

Electric propulsion is a future-proof concept

Path to improve energy efficiency and to decarbonize shipping

Activities related to URN

Topics:

- 1. Introduction
- 2. Fully coupled URN simulations
- 3. Project CLUE (Continuous Logging of Underwater noise Emissions)
- 4. Silent designs for research vessels
- 5. Takeaways

Introduction

Noise sources of Azipod propulsor

Main sources of Azipod underwater noise are:

- 1. Electro-magnetic noise propulsion motor
- 2. Hydrodynamic noise propeller
- *3. Structure borne noise caused by Azipod module frame excitations, structure and form*

Introduction

Electro-magnetic noise

- The motor is supplied with frequency converter for speed & torque control
- The curve shows a far-field measurement result from a seatrial (green) together with limit curve (red)
- The converter manifests itself at frequencies around 3, 6 and 9 kHz
- The peaks are related to converter switching frequency

Fully coupled URN simulations

Analytical sound radiation problem solution for hollow pulsating sphere immersed in fluid

$$-\omega^{2}(m+m_{rad})u+j\omega c_{rad}u+k(1+j\eta)u=F \quad c_{rad}=RA, m_{rad}=\frac{QA}{\omega}$$

An example:

- Steel sphere of 1 m radius, wall thickness 5 cm, F = 1 N, $\eta = 0.01$
- Immersed in water

©ABB October 10, 2023 | Slide 13

Fully coupled URN simulations

Dry vs. Wet eigenmodes

©ABB October 10, 2023 | Slide 14

Fully coupled URN simulations

Electro-magnetic URN

Why measure underwater noise continuously?

- Currently, underwater noise is measured only during seatrials.
- URN is normally measured in far-field using stationary hydrophones with a distance to the ship (costly & comprehensive procedures).
- Verification measurements are usually based on a set of two fixed operating conditions (11 knots and 80% MCR)
- URN emissions during off-design conditions are largely unknown
- DNV's simplified methology (near-field method) using pressure sensors mounted through the hull increases flexibility
 - ✓ Cost-effective and enables continuous monitoring of URN (propeller noise)
 - However, podded vessels have a larger range of characteristics which currently is not well captured by the near-field method (electro-magnetic noise)

How to measure underwater noise from a vessel with Azipods continuously?

- CLUE is an initial development study, prototype design of measurement system for URN which will be built and tested in-situ with a vessel using Azipod propulsion (duration 2 years started 1.4.2022).
- Partners: ABB+DNV+TC (Transport Canada)
- Real time monitoring of source levels during all operating conditions including acceleration, deceleration and maneuvering of the vessel will be studied.
- The project will develop a system to be able to detect occurrence of unfavourable operating conditions of the vessel causing excessive cavitation or other unwanted effects.
- The current near-field method is augmented by vibration measurements from the motor inside the Azipod.
- Correlation between near- and far-field measurements will improve estimates of noise from the Azipod (calibration)

Data collection/measurement period 1.4-15.10.2023

©ABB October 10, 2023 | Slide 19

Silent designs for research vessels

Research vessel with low voltage propulsor

©ABB October 10, 2023 Slide 20

Silent designs for research vessels

Research vessel with medium voltage propulsor

Takeaways

- 1. In order to estimate Azipod propulsor electro-magetic URN reliably, fully coupled approaches should be used in the simulations
- 2. Fully coupled simulations require more memory and processor power than uncoupled cases, but this is not an issue with modern computer platforms
- 3. Project CLUE serves the following goals:
 - Developing the near-field methologies further by improving the URN sensing accuracy for Azipod propulsors
 - ✓ Advanced condition monitoring methods for propeller cavitation, propeller singing, etc...
 - ✓ On-line URN monitoring system could be useful for research vessels also
- 4. ABB has made intensive research on URN of Azipod propulsors already for more than a decade and developed the product to fulfill the tightest underwater noise requirements.