

Underwater Radiated Noise (URN)

Presented by: Jackie Guo

Burges, Belgium October 16-20, 2023

Propeller Song

IMO Revised Guidelines on reducing URN from Ships

Ε

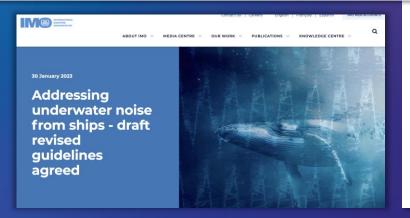
4 ALBERT EMBANKMENT LONDON SE1 7SR Telephone: +44 (0)20 7735 7611 Fax: +44 (0)20 7587 3210

> MEPC.1/Circ.906 22 August 2023

ORGANIZATION

Ε

4 ALBERT EMBANKMENT LONDON SE1 7SR Telephone: +44 (0)20 7735 7611 Fax: +44 (0)20 7587 3210


> MEPC.1/Circ.906 22 August 2023

INES FOR THE REDUCTION OF UNDERWATER RADIATED NOISE PING TO ADDRESS ADVERSE IMPACTS ON MARINE LIFE

Environment Protection Committee, at its sixty-sixth session (31 March a view to providing guidance on the reduction of underwater noise from and following a recommendation made by the Sub-Committee on Ship Design and Equipment (DE), at its fifty-seventh session, approved the Guidelines for the reduction of underwater noise from commercial shipping to address adverse impacts on marine life (the Guidelines).

- 2 The Marine Environment Protection Committee, at its eightieth session (3 to 7 July 2023), following a comprehensive revision of the Guidelines by the Sub-Committee on Ship Design and Construction (SDC), at its ninth session (23 to 27 January 2023), with a view to increasing awareness, uptake and implementation, approved the annexed Revised guidelines for the reduction of underwater radiated noise from shipping to address adverse impacts on marine life (Revised Guidelines).
- 3 Member States are invited to use the annexed Revised Guidelines with the aim of reducing underwater radiated noise from ships and to bring them to the attention of all parties concerned, in particular ship and equipment designers, shipbuilders and shipowners and operators, classification societies, suppliers, manufacturers and other stakeholders.
- 4 Member States and international organizations are also invited to submit information, observations, comments and recommendations based on the practical experience gained through the application of these Revised Guidelines to the Marine Environment Protection Committee under the agenda item "Any other business".
- 5 These Revised Guidelines will take effect on 1 October 2023
- 6 This circular revokes MEPC.1/Circ.833.

REVISED GUIDELINES FOR THE REDUCTION OF UNDERWATER RADIATED NOISE FROM SHIPPING TO ADDRESS ADVERSE IMPACTS ON MARINE LIFE

Main takeaway from IMO workshop:

Real-time URN measurement is key to reduce URN

IMO Expert Workshop on the relationship between Energy Efficiency and Underwater Radiated Noise

Time	Agenda	Speakers
	DAY 1 Se	ptember 18th
9H30	Opening Address (15 min)	IMO Marine Environment Division
9H45	Overview of the Format and Objectives (15 min)	Chairs: Eric Baudin (France), Leila Hatch (United States) and Michelle Sanders (Canada)
		NOISE EMISSIONS: Setting the Stage
		ila Hatch, US
100	Introduction and Overview of IMO Energy Efficiency Work (12 min)	Sveinung Oftedal (Norway / Chair of ISWG-GHG)
10H15	Introduction and overview of IMO URN (12 min)	Michelle Sanders, Alternate Permanent Representative of Canada to the IMO
10H30	GloNoise (10 min)	Steven Reyersen & Jose Matheickal
0H40 Healt	h break (20 min)	
	Presentation on the findings and recommendations on the GHG-URN matrix. (30 min)	Rienk Terweij, VARD Marine
11H30	Panel: perspectives on implementation of GI	HG and noise reduction strategies (1hr)
		Chris Waddington, International Chamber of Shipping (ICS)
		Jim Covill, International Association of Classification Societies (IACS)
		Madadh MacLaine, Zero Emissions Ship Technology Association (ZESTA)
		Tom Smith, University College London
		John Maggs, Seas At Risk / Clean Shipping Coalition (CSC)
unch break	12H30PM-1H45PM (1H15)	•
Theme 2 EN		NEW SYSTEMS: What do we know about URN relationships? Baudin, France
1H45PM	12 min x 8 presenters (2H)	Lee B Kindberg, Maersk (remote)
		Yousef El Bagoury, CSL
		Frans Hendrik Lafeber, MARIN
		Lars Eikeland, Oscar Propulsion
		Mehmet Atlar, Gaters project
		Tomaso Gaggero and Michele Viviani, Life PIAQUO project
		Hongseok Jeong and Hanshin Seol, KRISO
		Kevin Reynolds, Glosten, naval architecture & marine

It's about creating a Sustainable Ocean

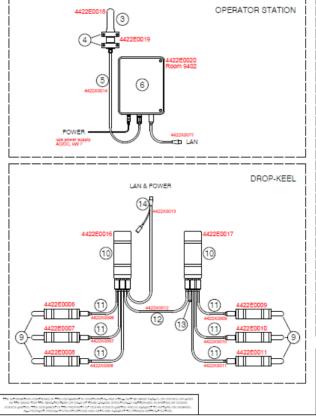
SATURN Project - Developing ISO Standards and Solutions for Underwater Radiated Noise (URN)

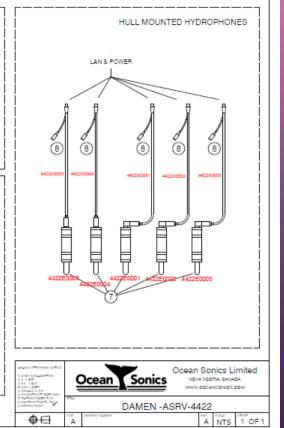
https://www.youtube.com/watch?v=oHUeFolStfo

SATURN Project : - Underwater Radiated Noise (URN) Measurements

RSV NUYINA Listens for Vessel Noise and Bio-acoustic Research

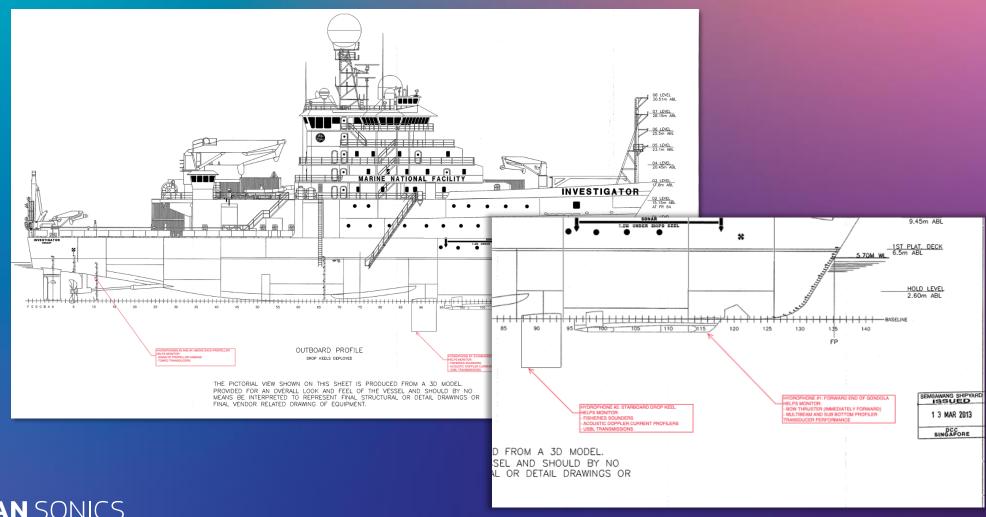
11 real-time smart hydrophone installed in icebreaker NUYINA 2020

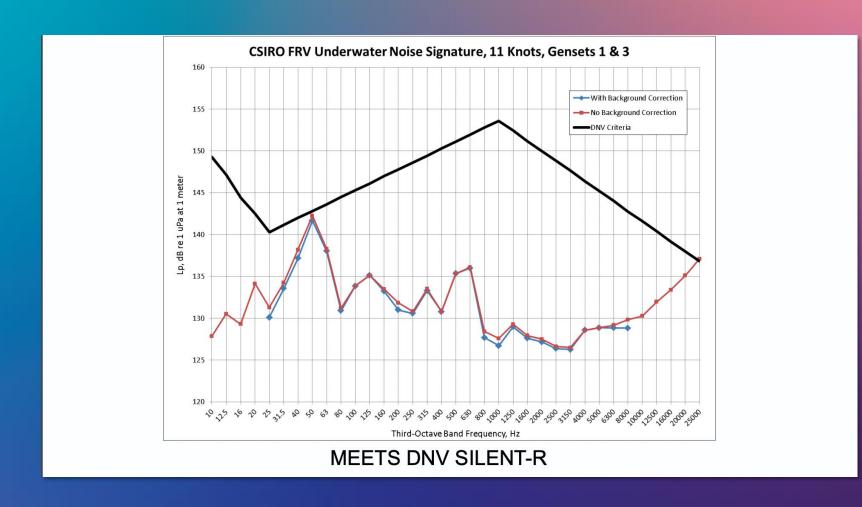

APPENDIX D – HYDROPHONE LOCATION CHARTS


Hull Mounted S/N	1759	1760	1813	1814	1815	
Drop Keel S/N	1785	1786	1787	1788	1789	1790

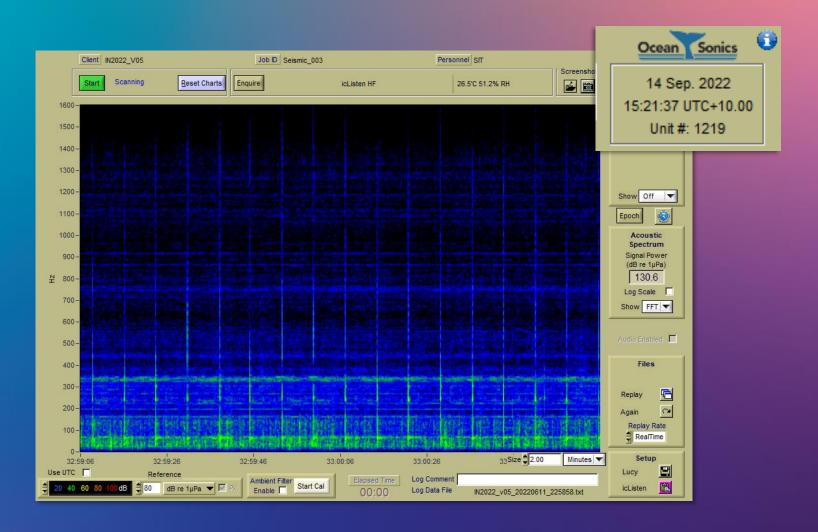
Hull Mounted Vessel Noise Measuring System			
Hydrophone Location	Hydrophone Serial Number	Fore/Aft from CRP	Port/Starboard from CRP
E0001 Bow Port			
E0002 Mid Starboard			
E0003 Port Stern			
E0004 Starboard Stern			
E0005 Prop Starboard			

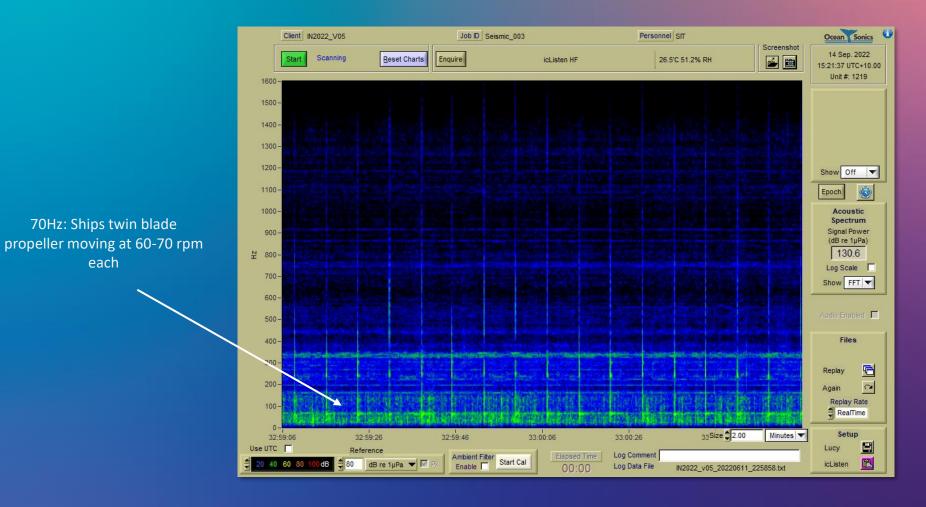
Drop Keel Mounted Bioacoustics System			
Hydrophone Location	Hydrophone Serial Number	Fore/Aft from CRP	Port/Starboard from CRP
E0006 Starboard Aft			
E0007 Starboard Mid			
E0008 Starboard Forward			
E0009 Port Forward			
E0010 Port Mid			
E0011 Port Aft			


APPENDIX C – RSV NUYINA EQUIPMENT SET-UP SCHEMATIC

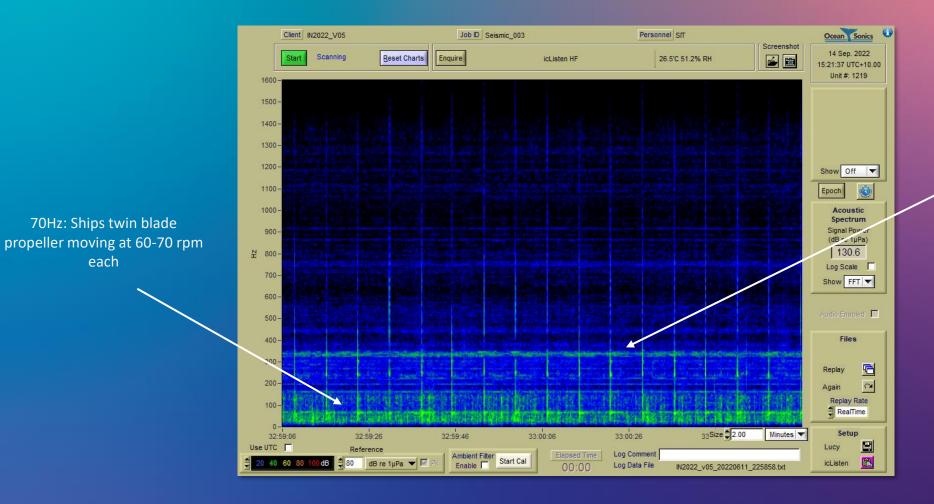


RV Investigator Listens for Machine Health and Acoustic Sensors Performance


RV Investigator Meets DNV. Silent - R



INVESTIGATOR TI	RANSDUCERS
GONDOLA	
EM122	12kHz FULL OCEAN DEPTH MULTIBEAM
SBP120	3.5kHz SUB BOTTOM PROFILER
EM710	100kHz SHALLOW WATER HIGH RESOLUTION MULTIBEAM
ME70	70-120kHz SCIENTIFIC MULTIBEAM ECHO SOUNDER
12/16-60	DUAL BEAM 12kHz TRANSDUCER FOR PINGER AND ACOUSTIC RELEASE WORK
DL850	DUAL AXIS DOPPLER
EN250	50kHz BRIDGE ECHO SOUNDER
SH90	114kHz OMNIDIRECTIONAL FISH-FINDING SONAR
HYDROPHONE	OCEANSONICS ICLISTEN HF
PORT DROP KEEL	
EK60 SUITE	18, 38, 70, 120, 200 AND 333kHz SPLIT BEAM TRANSDUCERS
OS75	75kHz RDI ADCP
OS150	150kHz ADCP
STARBOARD DROP KEEL	
SIMRAD ITI	SIMRAD TRAWL NET MONITORING SYSTEM
USBL	19-36kHz SONARDYNE RANGER ULTRA-SHORT BASELINE UNDERWATER POSITIONING SYSTEM
HYDROPHONE	OCEANSONICS ICLISTEN HF



70Hz: Ships twin blade

each

350 Hz: Likely ship machinery (diesel generators, pumps, air conditioning plant)

70Hz: Ships twin blade

each

DNV Silent Vessel Class Notations

DNV GL'S DIFFERENT SILENT CLASS NOTATIONS

Vessels using hydroacoustic equipment as important tools in their operations, where the aim is to not disturb the hydroacoustic equipment. SILENT

Seismic vessels, where the aim is to avoid disturbance of the signals coming from the streamers.

Fishery vessels, where the aim is to not scare the fish.

Research vessels, where the aim is to avoid disturbance of underwater life.

which is to demonstrate that the vessel is controlling its environmental noise emission.

Why we listen to Ocean in real-time

Real-time ocean sound data is critical for us to better understand, protect and harness the power of our oceans

Real-time Ocean Observatories are Listening to and Monitoring the Ocean

Key End Users:

- Aloha (US)
- BPPT (Indonesia)
- Barrow Strait (Arctic)
- COVE (Canada)
- EMSO (EU)
- Holyrood Bay (Newfoundland)
- INESC-TEC (Portugal)
- INGV (Italy)
- LoVe (Norway)
- MBARI (US)
- ONC (Canada)
- 001 (US)
- Smartbay (Ireland)

Smart Hydrophone Applications

Energy

Defense & Security

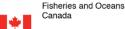
Maritime Transportation

Fisheries & Aquaculture

Why icListen?

The icListen eliminates the need for pre-amp, filters, converters and data-link with a self-contained, compact unit that streams or records HD acoustic data in real-time. **Analog Hydrophone** ANALOG/DIGITAL CONVERTER DATA STORAGE **Smart Hydrophone**

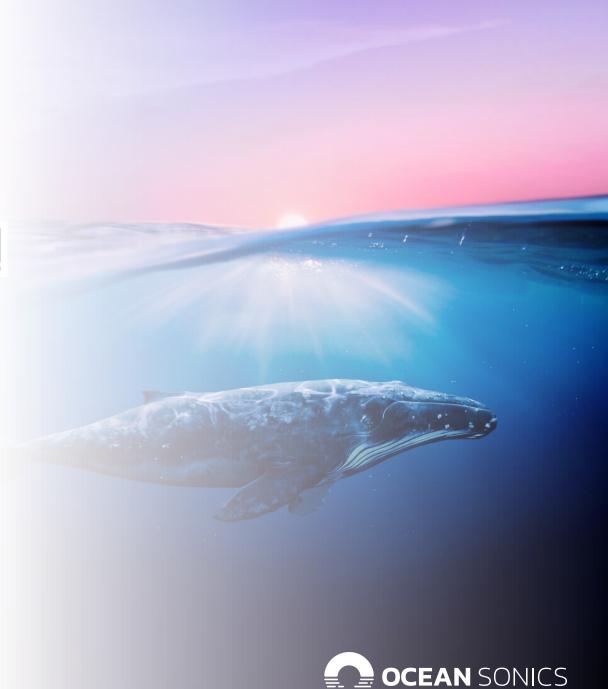
The icListen benefits


The icListen Difference	Benefits
1. Edge Processing (processing data at source)	Manage flood of dataReady for Al and Machine Learning
2. Event Detection	 More options for data links Event capture Make decisions in real-time
3. Self-Synchronize	 Create arrays of any shape or size while maintaining highest signal quality
4. Ultra Low Self Noise Wide Dynamic Range	Maximize sensitivity while eliminating clipping

Some of Our Users

Canada

Interreg North Sea Region



Do you know your vessel URN?

