

Helping research vessels and robots to play nicely

Enabling multi-robot collaboration by integrating the Sonardyne Mini Ranger 2 system with the Robotic Operating System

Geraint West

Head of Business Development

https://www.sonardyne.com/case-studies/a-new-world-of-multi-robot-ocean-exploration/

Sonardyne

Subsea positioning, comms & monitoring <u>sonardyne.com</u>

So WAVEFRONT So wa

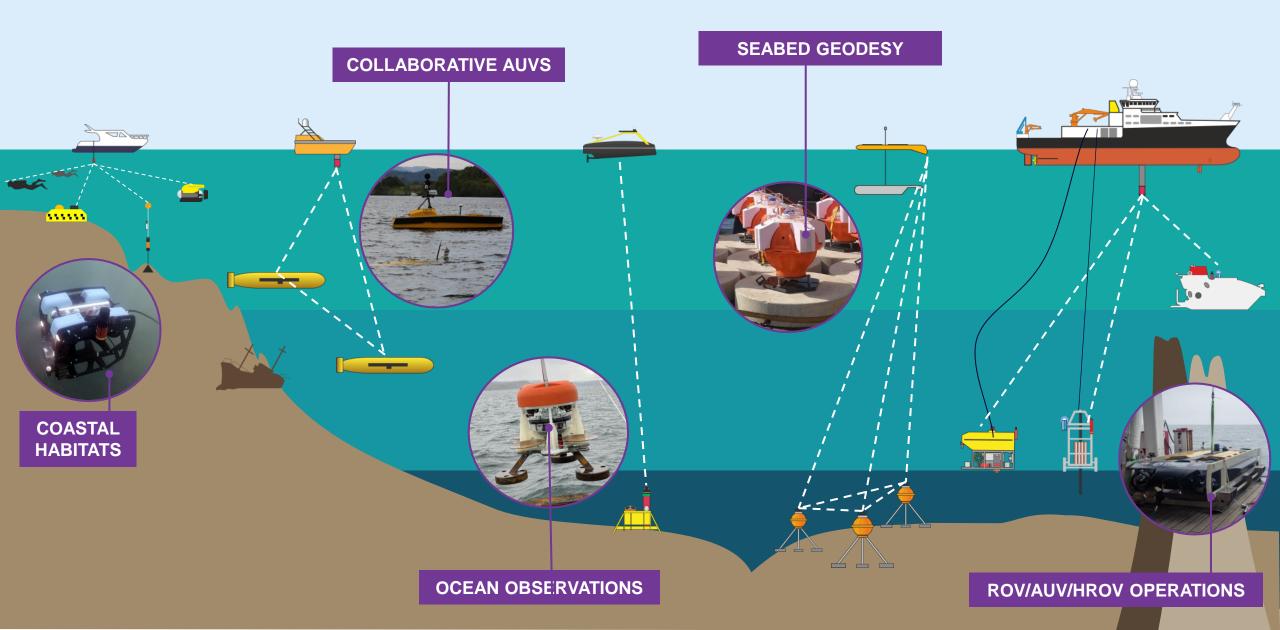
FORCYS

Sonar design wavefront.systems

Chelsea Technologies

VOYIS

Environmental monitoring sensors <u>chelsea.co.uk</u>


Software, integrated system solutions, software & hire <u>eiva.com</u>

Subsea laser scanning & imaging voyis.com

integrated defence solutions <u>forcys.com</u>

Helping research vessels and robots to play nicely

https://www.youtube.com/watch?v=4yJ3 fP1ZVs

SsaTrac 2

https://www.sonardyne.com/sonardyne-navigation-and-positioningtechnology-helps-locate-shackletons-historic-endurance/ Image courtesy of Falklands Maritime Heritage Trust and National Geographic

https://youtu.be/D-7yKshUaH8?list=TLGGUYvOZQDo-fIyMDA5MjAyNA Image courtesy of Voyis Imaging Inc. and Magellan

https://www.youtube.com/watch?v=dhpji6JptxE

2 2

Helping research vessels and robots to play nicely

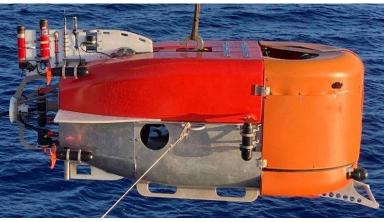
OCEAN EXPLORATION COOPERATIVE INSTITUTE WOODS HOLE OCEANOGRAPHIC INSTITUTION

OCEAN EXPLORATION TRUST

https://www.youtube.com/watch?v=S9N6JcMYhpY https://youtu.be/RvhIFaB1ofU

THE UNIVERSITY OF RHODE ISLAND "We are more than exceeding our goals of communication and collaboration with tracking and two-way communication among all three vehicles and the ship using the ASV to follow the vehicles and as a relay when the vehicles get out of ship's range. All done with the Sonardyne systems"

Prof Larry Mayer, University of New Hampshire



© Sonardyne International

Helping research vessels and robots to play nicely: Meet the robots

During the 2022 NOAA Ocean Exploration Cooperative Institute Technology Integration Cruise (aka: OECI Tech Challenge), The surface robot DriX worked with the underwater robots Mesobot and NUI allowing Nautilus to freely map the seafloor nearby.

The Sonardyne ROS driver was a key component used with Project11 on DriX which provided situational awareness and command and control

Images courtesy of Ocean Exploration Trust

Helping research vessels and robots to play nicely: Providing the sub-surface/surface link - Mini Ranger 2

- Ranger 2 software with robotics pack
- HPT 3000
 - MF (20-34 kHz)
 - <4,000m tracking (with ER option)
 - <15mm ranging precision
 - Positioning repeatability: <1.3% of slant range 1 Drms / 0.9% 1 Sigma (internal MRU) <0.2% of slant range 1 Drms / 0.14% 1 Sigma (external MRU)
 - Integrated MTi-30 Xsens MRU
 - Ethernet-based comms

© Sonardyne International

Image courtesy of Larry Mayer, UNH

Helping research vessels and robots to play nicely: Beacons for tracking and telemetry

- Simultaneous USBL navigation with two way SMS telemetry (AvTrak 6)
- High data rate (9kbps) acoustic modem
- <7000m depth operation
- Variant options include remote transducer, OEM and Nano

Images courtesy of Ocean Exploration Trust

Helping research vessels and robots to play nicely: ROS driver and message definitions

ROS Sonardyne drivers (Developed by the University of New Hampshire) https://github.com/CCOMJHC/sonardyne_usbl

modem_node

The modem_node.py node provides topics for sending and receiving SMS messages using sonardyne_msgs/SMS messages and for sending and receiving raw modem commands using std_msgs/String messages. Supports serial, TCP or UDP connections.

ranger_node

The ranger_node.py node subscribes to asynchronous position updates from the Ranger software and publishes them as geographic_msgs/GeoPointStamped messag es.

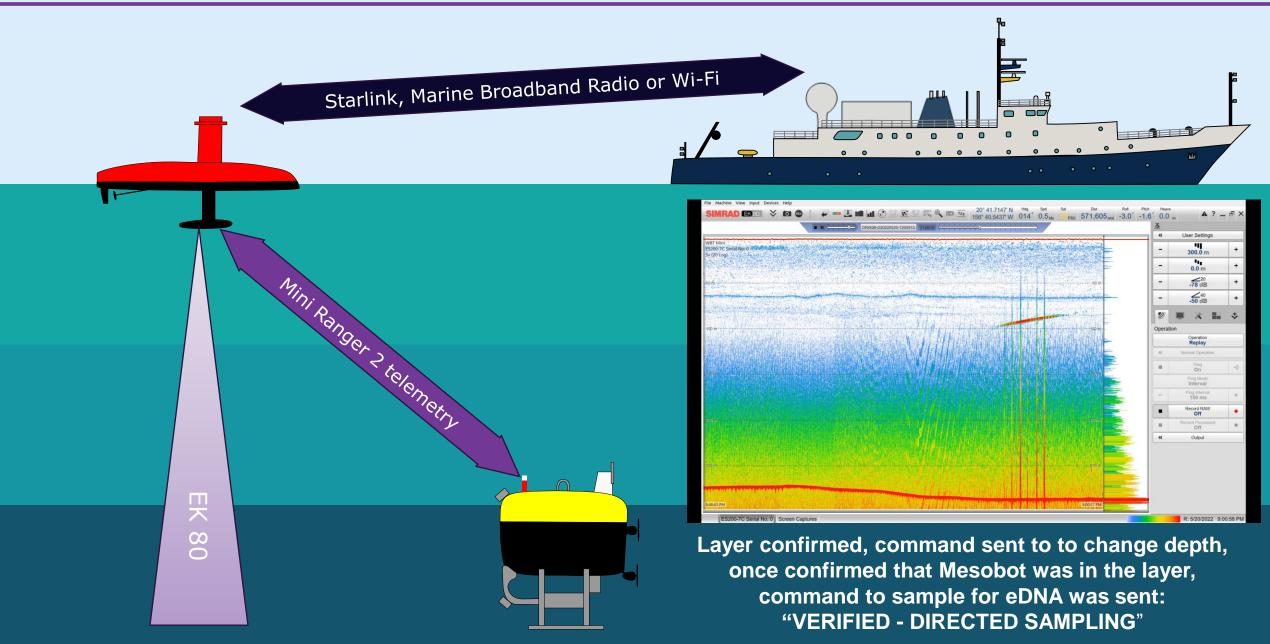
Uses XML base UDP remote control protocol.

EROS

ROS Message Definitions

https://github.com/CCOMJHC/sonardyne msgs

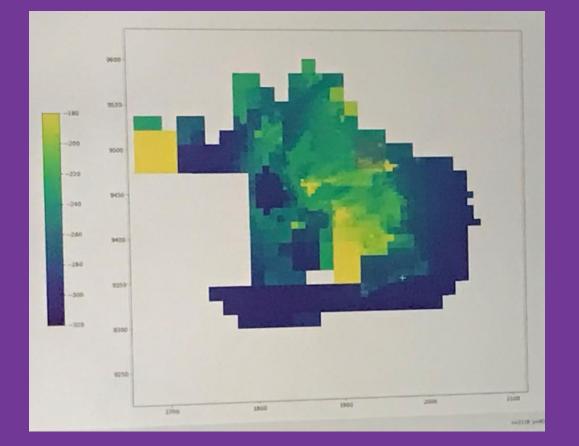
Position.msg


Header header string UID float32 age string category string name float64 latitude float64 longitude float32 depth string history

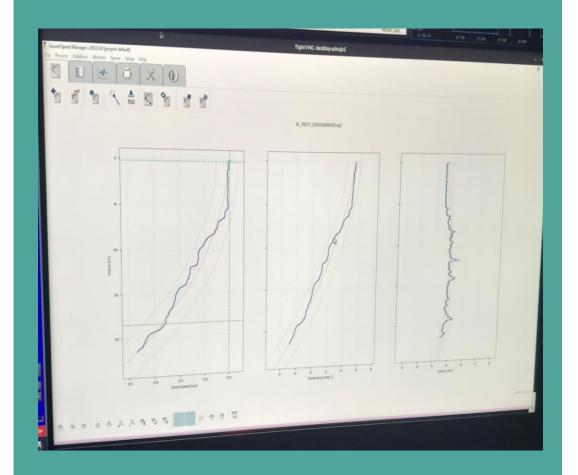
SMS.msg

time receive_time
string address
string message

Helping research vessels and robots to play nicely: Directed sampling



Helping research vessels and robots to play nicely: near real-time data for operational decision making


NUI "Co-Exploration"

Both MBES mapping and camera data via DriX acoustic relay.

Images courtesy of Ocean Exploration Trust

Transmission of CTD measurements from Mesobot to ship via DriX for real-time input on water column properties

Helping research vessels and robots to play nicely: In conclusion... but not quite, cool video to follow

Sonardyne

The combination of the Sonardyne Mini Ranger 2 system with a ROS driver for integration with Project11 was a key building block allowing the rapid development of technologies for marine robot cooperation.

University of New Hampshire

NAUTILUS

Sonardyne

Courtesy of Ocean Exploration Trust

and the same of the

NAUTILUS

8.00

Thank you for your time today Any questions?

Contact Geraint West: geraint.west@sonardyne.com

