Sharing Winch Assets David Fisichella (WHOI)

SHARED-USE WINCHES TO SERVE THE U.S. RESEARCH FLEET

WHAT WORKS AND WHAT DOESN'T

Sound Ocean Systems, Inc. 17455 NE 67 th Court, Suite #120 Redmond, WA 98052 USA Tel: 425-869-1834 Fax: 425-869-5554	Document	S140005-447-MCD-01			
	Title	Maximum Capability Document			
	Revision	2.0	Date	11 MAR 2015	
	Author	DLB	Sheet	3 of 6	

3. Winch Characteristics

16,000 lbs (7,258 kg)
3,328 m (10,919 ft)
17,500 lbs (7,938 kg)
70,000 lbs (31,751 kg)
25,000 lbs (11,340 kg)
25,000 lbs (11,340 kg)
10.5 m/min (34.5 ft/min)
25,000 lbs (11,340 kg)
41.6 m/min (136.3 ft/min)
400-480 VAC, 50-60 Hz, 3 ph, 200 Amp
-20° to +45° C (-4° to 113° F)

* Capacity is based on $\frac{3}{4}$ " synthetic line with a double spaced cable lay, with 2 in. of radial clearance between the top layer and the OD of the drum flange.

4. Free Body Diagram

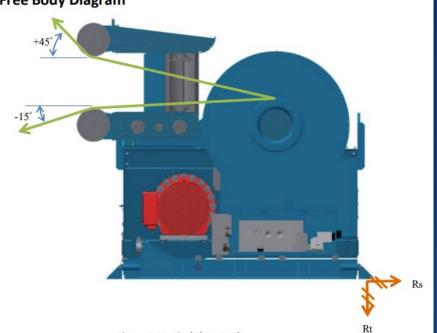


Figure 1: Vertical Fleet Angle

At DLT Rt = 12,500 lbs (5,682 kg) Rs = 6,000 lbs (2,727 kg)

At SWL Rt = 4,465 lbs (2,030 kg) Rs = 2,143 lbs (974 kg)

Forces are the maximum forces per bolt for the highest loaded bolt in the pattern, as shown in Figure 3. Analysis is valid for DLT with a 30 bolt hold down pattern, a vertical fleet angle of $+45^{\circ}/-15^{\circ}$, and a

Home	Request Form	Inventory	Schedule	Contact Us	

UNOLS Winch Pool Schedule

= equi	ipment in-use	Start month:	Jan 🗸 Start year	: 2023 End n	nonth: Dec 🗸 Er	nd year: 2023	Go	
Inventory	Jan	Feb	Mar	Apr	Мау	Jun	Jul	Au
MASH4K-1				8				
MASH4K-2								
<u>MD-1</u>								
<u>MD-2</u>								
<u>MD-3</u>								
MD-4								
<u>LD-1</u>								
LD-2								
LD-3								
LD-5								
MASH2K-1								
MASH2K-2								
<u>MS-1</u>				I				
<u>MS-2</u>								
ULD-1								
Liethiser								
Pine								
TSE								
<u>HD-2</u>								
Large								

Request Form Requestor*: first last PI*: first last Institution Name: Email Address*: Telephone Number(s)*: Agency: NSF v or other agency: Ship: Cruise: Mobilization date (mm/dd/yyyy): === Mobiliation port: Demobilization port: Demobilization date (mm/dd/yyyy): === Weight of gear (lbs): Expected tension (lbs): Wire used: Wire length (m): Use description: Comments:

Is the winch pool concept a perfect solution?

Thank You